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For a generic decay channel, the partial decay width is:
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The form factors can be related to a matrix element

PLWG(6%)u(k,s) = (m|O'|N)
The operators ' are given by

ORL = ebeyaT(x t)CPRrdP(x, t)PLuc(x, t)
Ot = ebeyaT(x t)CPLdP(x, t)PLuc(x, t)
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Define a general operator of the form

Ol';l'j _ eabcua(x, t)Cr,-db(X, t)rqu(X, t)

where ['; are matrices with two spin indices, labelled by,

S= P =5
V=9 . A = Y5
T =} T =2 {v 7}

R=Pr=35(1+7) L=Pr=3(1-1)

Operators with this structure are also used later in nucleon
correlation functions and in the non-perturbative renormalization
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We could measure the matrix elements (m|O'|N) directly
» Known as the direct method

» Three-point functions are required

» Computationally expensive

Alternatively can relate the three-point functions to two-point
functions using Chiral Perturbation Theory

» Known as the indirect method

» Computationally cheaper

» Introduces an additional source of error

6
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For p — 7% + et the chiral perturbation theory gives

Wet(p — 7%+ e™) = a(l+ D+ F)/V2f +O(m}/my)
Wit(p— % +et) = B(1+ D+ F)/V2f + O(mi/my)

« and [ are low energy constants from the chiral lagrangian
They can be calculated from two—point functions

(0|ORLINY = aPpu(k,s)
(0|0 |N) = BPLu(k,s)
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Define a class of two—point functions

fr1|—2,r3|—4(t) = Ztr |:<OF1FQ@F3F4>P]

OF1r2 — Eabcua(X’ t)Crldb(X, t)rjUC(X, t)

1

Example: the proton correlation function

Z<Jp(x7 t)jp(o» = fps,ps(t)

X
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Strategy:

» First find my from a correlated fit to the effective mass

fps.ps(t)

meii(t) = log <fPs,Ps(f +1)

>—>m/\/ t>0

» Then find Gy from a correlated fit to an effective amplitude

Gneft = \/2fps,pse™t — Gy t>0

» Finally to calculate a and 3 we use a ratio of two—point
functions

fre,ps(t)

fre.ps(t)
— Rs(t) =2Gy ———"% —
NfPS,PS(t) Q B( ) N /8

R.(t) = 2G,
(t) fes ps(t)



» Calculation is carried out on 2-+1 flavour Domain Wall
Fermion ensembles

» Nearly exact chiral symmetry
» Inverse lattice spacing a~! = 1.73(3) GeV
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Fitting

Fit by minimising a correlated x?
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Fitting

Fit by minimising a correlated x?

X2(p) =Y [pei(t) = pl ot [Pest(t)) — p]

t,t

With correlation Matrix

Npoot
Cor = 3 — > (#1710 o] o) - )]

Bootstrap to get central value and errors
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Nucleon Mass and amplitude
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Nucleon Extrapolations
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Low energy constant: a
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Low energy constant: /3
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Systematic Errors

» Finite volume errors
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Systematic Errors

Finite volume errors
Chiral Extrapolation errors

(Continuum Extrapolation errors)

vV v v Y

Errors in renormalisation
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Systematic Errors

>
>
>
>
>

Finite volume errors

Chiral Extrapolation errors
(Continuum Extrapolation errors)
Errors in renormalisation

(Error in Chiral Perturbation Theory)
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Finite Volume Error
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» No noticeable effect
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Extrapolation Error
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NPR

» Non-perturbative MOM scheme renormalisation of the
Rome-Southampton group
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= ZABOgtt

» A and B label the spin structure, eg LL

» ZAB is the mixing matrix

19/27



NPR

>

Non-perturbative MOM scheme renormalisation of the
Rome-Southampton group

v

The renormalised operators are

A _ -AB~B
Oren =7 Olatt

v

A and B label the spin structure, eg LL

ZAB is the mixing matrix

OLL and ORL mix with a 3rd operator OA(LY)
= 7Z”B is a 3 x 3 matrix

v

v
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NPR
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Non-perturbative MOM scheme renormalisation of the
Rome-Southampton group
The renormalised operators are

OA

_ 7AB~B
ren — 4 Olatt

A and B label the spin structure, eg LL

ZAB is the mixing matrix

OLL and ORL mix with a 3rd operator OA(LY)
= 7Z”B is a 3 x 3 matrix

Exponentially accurate chiral symmetry from Domain Wall
Fermions should suppress operator mixing
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We want to calculate the non-perturbative amputated 3-quark
vertex function of these operators

-1 -1
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Glbe.aprs(P?) = €P9(CM)ap M5y (Q22(P) QB 5(P) QS (P))
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We want to calculate the non-perturbative amputated 3-quark
vertex function of these operators

-1 -1

N vvls

Glbe.aprs(P2) = €P9(CM)arp 5y (Q22(P) QB E(P) QS (P))

where

! Al

Qe = (Saan(p) 1S p)

and I and I are the matrices which appear in OA

20 /27



» The renormalization condition in the RI-Mom Scheme is

Zq—3/2ZBCMCA _ 5BA
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» The renormalization condition in the RI-Mom Scheme is

Zq—3/2 MCA — 5BA

» Where the matrix M is,

AB _ HA 2\ pB
M - gabc,aﬁ'yé(p )'Dabc,ﬁaé'y

» and the projection matrices P;\bcﬂum are chosen so that the
renormalization condition is satisfied in the free field case
where Z; =1 and = §BC.
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The renormalization condition in the RI-Mom Scheme is

Zq—3/2ZBCMCA _ 5BA

Where the matrix M is,

AB A 2\ pB
M = gabc,aﬁ'yé(p )Pabc,ﬁozéfy

and the projection matrices P;‘bcﬁo“;7 are chosen so that the
renormalization condition is satisfied in the free field case
where Z; =1 and ZBC — §BC.

ZAB can then be calculated from MAB using the

renormalization condition
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» Perform a chiral extrapolation
» Match to the MS scheme at 2GeV
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» Perform a chiral extrapolation
» Match to the MS scheme at 2GeV

» This gives
UMS—RE(2GeV) . = 0.662(10)
UMS—latt(2GeV) g, = 0.664(8)

» Additional systematic error of 8% from the matching
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Outlook

» The direct calculation is currently underway
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Outlook

» The direct calculation is currently underway

» Example: Preliminary results for the WOLL(p — 1T +v), on
the 163 x 32 lattice, with valence quark mass am, = 0.03

Preliminary Data
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» Writing the proton lifetime as,

= LEC2 X AQCD X AGUT
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» Writing the proton lifetime as,

» We can put bounds on the GUT scale physics:

= LEC2 X AQCD X AGUT

Decay Mode | Lifetime bound(yrs) ‘ AguT bound (Méf‘}T)

p— etn® > 8.2 x 1033 < 44
p— eta® > 8.2 x 1033 <37
p— Ko > 2.3 x 1033 <76
n— K% > 1.3 x 1032 <733
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» For example:

p — 7%t via X Boson Exchange

Minimal SU(5) SUSY GUT
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» For example:

p — 7%t via X Boson Exchange

Minimal SU(5) SUSY GUT

» Agur is given by

g A%
My

Agur = 1+ (1+ V)|

» Can put a bound on My
Mx > 5 x 101°
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